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The COVID-19 pandemic has created unprecedented challenges
worldwide. Strained healthcare providers make difficult decisions
on patient triage, treatment and care management on a daily basis.
Policy makers have imposed social distancing measures to slow the
disease, at a steep economic price. We design analytical tools to sup-
port these decisions and combat the pandemic. Specifically, we pro-
pose a comprehensive data-driven approach to understand the clini-
cal characteristics of COVID-19, predict its mortality, forecast its evo-
lution, and ultimately alleviate its impact. By leveraging cohort-level
clinical data, patient-level hospital data, and census-level epidemio-
logical data, we develop an integrated four-step approach, combin-
ing descriptive, predictive and prescriptive analytics. First, we ag-
gregate hundreds of clinical studies into the most comprehensive
database on COVID-19 to paint a new macroscopic picture of the dis-
ease. Second, we build personalized calculators to predict the risk
of infection and mortality as a function of demographics, symptoms,
comorbidities, and lab values. Third, we develop a novel epidemi-
ological model to project the pandemic’s spread and inform social
distancing policies. Fourth, we propose an optimization model to re-
allocate ventilators and alleviate shortages. Our results have been
used at the clinical level by several hospitals to triage patients, guide
care management, plan ICU capacity, and re-distribute ventilators. At
the policy level, they are currently supporting safe back-to-work poli-
cies at a major institution and equitable vaccine distribution planning
at a major pharmaceutical company, and have been integrated into
the US Center for Disease Control’s pandemic forecast.
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I
n just a few weeks, the whole world has been upended by the1

outbreak of COVID-19, an acute respiratory disease caused2

by a new coronavirus called SARS-CoV-2. The virus is highly3

contagious: it is easily transmitted from person to person via4

respiratory droplet nuclei and can persist on surfaces for days5

(1, 2). As a result, COVID-19 has spread rapidly—classified by6

the World Health Organization as a public health emergency7

on January 30, 2020 and as a pandemic on March 11. As of8

mid-May, over 4.5 million cases and 300,000 deaths have been9

reported globally (3).10

Because no treatment is currently available, healthcare11

providers and policy makers are wrestling with unprecedented12

challenges. Hospitals and other care facilities are facing short-13

ages of beds, ventilators and personal protective equipment—14

raising hard questions on how to treat COVID-19 patients15

with scarce supplies and how to allocate resources to prevent16

further shortages. At the policy level, most countries have17

imposed “social distancing” measures to slow the spread of the18

pandemic. These measures allow strained healthcare systems19

to cope with the disease by “flattening the curve” (4) but 20

also come at a steep economic price (5, 6). Nearly all gov- 21

ernments are now confronted to di�cult decisions balancing 22

public health and socio-economic outcomes. 23

This paper proposes a comprehensive data-driven approach 24

to understand the clinical characteristics of COVID-19, predict 25

its mortality, forecast its evolution, and ultimately alleviate 26

its impact. We leverage a broad range of data sources, which 27

include (i) our own cohort-level data aggregating hundreds of 28

clinical studies, (ii) patient-level data obtained from electronic 29

health records, and (iii) census reports on the scale of the pan- 30

demic. We develop an integrated approach spanning descrip- 31

tive analytics (to derive a macroscopic understanding of the 32

disease), predictive analytics (to forecast the near-term impact 33

and longer-term dynamics of the pandemic), and prescriptive 34

analytics (to support healthcare and policy decision-making). 35

Specifically, our approach comprises four steps (Figure 1): 36

• Aggregating and visualizing the most comprehensive clin- 37

ical database on COVID-19 (Section 1). We aggregate 38

cohort-level data on demographics, comorbidities, symp- 39

toms and lab values from 160 clinical studies. These data 40

paint a broad picture of the disease, identifying common 41

symptoms, disparities between mild and severe patients, 42
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Fig. 1. Overview of our end-to-end analytics approach. We leverage diverse data sources to inform a family of descriptive, predictive and prescriptive tools for clinical and policy
decision-making support.

and geographic disparities—insights that are hard to de-43

rive from any single study and can orient future clinical44

research on COVID-19, its mutations, and its disparate45

e�ects across ethnic groups.46

• Providing personalized indicators to assess the risk of47

mortality and infection (Section 2). Using patient-level48

data, we develop machine learning models to predict49

mortality and infection risk, as a function of demographics,50

symptoms, comorbidities, and lab values. Using gradient51

boosting methods, the models achieve strong predictive52

performance—with an out-of-sample area under the curve53

above 90%. These models yield personalized calculators54

that can (i) guide triage, treatment, and care management55

decisions for strained healthcare systems, and (ii) serve as56

pre-screening tools for patients before they visit healthcare57

or testing facilities.58

• Developing a novel epidemiological model to forecast the59

evolution of the disease and assess the e�ects of social60

distancing (Section 3). We propose a new compartmental61

model called DELPHI, which accounts for COVID-19 fea-62

tures such as underdetection and government response.63

The model estimates the disease’s spread with high ac-64

curacy; notably, its projections from as early as April 365

have matched the number of cases observed in the United66

States up to mid-May. We also provide a data-driven67

assessment of social distancing policies, showing that the68

pandemic’s spread is highly sensitive to the stringency69

and timing of mitigating measures.70

• Proposing an optimization model to support ventilator71

allocation in response to the pandemic (Section 4). We72

formulate a mixed-integer optimization model to allocate73

ventilators e�ciently in a semi-collaborative setting where74

resources can be shared both between healthcare facilities75

or through a central authority. In the United States,76

this allows us to study the trade-o�s of managing the77

federal ventilator stockpile in conjunction with inter-state78

transfers. Results show that limited ventilator transfers79

could have eliminated shortages in April 2020.80

A major contribution of our work is to treat these dif-81

ferent questions as interdependent challenges raised by the82

pandemic—as opposed to a series of isolated problems. Indeed,83

clinical decision-making depends directly on patient inflows84

and available supplies, while resource planning and govern-85

ment responses react to patient-level outcomes. By combining 86

various data sources into descriptive, predictive and prescrip- 87

tive methods, this paper proposes an end-to-end approach to 88

design a comprehensive and cohesive response to COVID-19. 89

Ultimately, this paper develops analytical tools to inform 90

clinical and policy responses to the COVID-19 pandemic. 91

These tools are available to the public on a dedicated web- 92

site.� They have also been deployed in practice to combat 93

the spread of COVID-19 globally. Several hospitals in Europe 94

have used our risk calculators to support pre-triage and post- 95

triage decisions, and a major financial institution in South 96

America is applying our infection risk calculator to determine 97

how employees can safely return to work. A major hospital 98

system in the United States planned its intensive care unit 99

(ICU) capacity based on our forecasts, and leveraged our opti- 100

mization results to allocate ventilators across hospitals when 101

the number of cases was rising. Our epidemiological predic- 102

tions are used by a major pharmaceutical company to design 103

a vaccine distribution strategy that can contain future phases 104

of the pandemic. They have also been incorporated into the 105

US Center for Disease Control’s forecasts (7). 106

1. Descriptive Analytics: Clinical Outcomes Database 107

Early responses to the COVID-19 pandemic have been in- 108

hibited by the lack of available data on patient outcomes. 109

Individual centers released reports summarizing patient char- 110

acteristics. Yet, this decentralized e�ort makes it di�cult to 111

construct a cohesive picture of the pandemic. 112

To address this problem, we construct a database that ag- 113

gregates demographics, comorbidities, symptoms, laboratory 114

blood test results (“lab values”, henceforth) and clinical out- 115

comes from 160 clinical studies released between December 116

2019 and May 2020—made available on our website for broader 117

use. The database contains information on 133,600 COVID-19 118

patients (3.13% of the global COVID-19 patients as of May 119

12, 2020), spanning mainly Europe (81, 207 patients), Asia 120

(19, 418 patients) and North America (23, 279 patients). To 121

our knowledge, this is the largest dataset on COVID-19. 122

A. Data Aggregation. Each study was read by an MIT re- 123

searcher, who transcribed numerical data from the manuscript. 124

The appendix reports the main transcription assumptions. 125

�www.covidanalytics.io
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Each row in the database corresponds to a cohort of126

patients—some papers study a single cohort, whereas oth-127

ers study several cohorts or sub-cohorts. Each column reports128

cohort-level statistics on demographics (e.g., average age, gen-129

der breakdown), comorbidities (e.g., prevalence of diabetes,130

hypertension), symptoms (e.g., prevalence of fever, cough),131

treatments (e.g., prevalence of antibiotics, intubation), lab132

values (e.g., average lymphocyte count), and clinical outcomes133

(e.g., average hospital length of stay, mortality rate). We also134

track whether the cohort comprises “mild” or “severe” patients135

(mild and severe cohorts are only a subset of the data).136

Due to the pandemic’s urgency, many papers were published137

before all patients in a cohort were discharged or deceased. Ac-138

cordingly, we estimate the mortality rate from discharged and139

deceased patients only (referred to as “Projected Mortality”).140

B. Objectives. Our main goal is to leverage this database to141

derive a macroscopic understanding of the disease. We break142

it down into the following questions:143

• Which symptoms are most prevalent?144

• How do “mild” and “severe” patients di�er in terms of145

symptoms, comorbidities, and lab values?146

• Can we identify epidemiological di�erences in di�erent147

parts of the world?148

C. Descriptive Statistics. Table 1 depicts the prevalence of149

COVID-19 symptoms, in aggregate, classified into “mild” or150

“severe” patients, and classified per geographic region. Our151

key observations are that:152

• Cough, fever, shortness of breath, and fatigue are the153

most prevalent symptoms of COVID-19.154

• COVID-19 symptoms are much more diverse than those155

listed by public health agencies. COVID-19 patients can156

experience at least 15 di�erent symptoms. In contrast,157

the US Center for Disease Control and Prevention lists158

seven symptoms (cough, shortness of breath, fever, chills,159

myalgia, sore throat, and loss of taste/smell) (8); the160

World Health Organization lists three symptoms (fever,161

cough, and fatigue) (9); and the UK National Health162

Service lists two main symptoms (fever and cough) (10).163

This suggests a lack of consensus among the medical164

community, and opportunities to revisit public health165

guidelines to capture the breadth of observed symptoms.166

• Shortness of breath and elevated respiratory rates are167

much more prevalent in cases diagnosed as severe.168

• Symptoms are quite di�erent in Asia vs. Europe or North169

America. In particular, more than 75% of Asian patients170

experience fever, as compared to less than half in Europe171

and North America. Alternatively, shortness of breath is172

much more prevalent in Europe and North America.173

Using a similar nomenclature, Figure 2A reports demo-174

graphics, comorbidities, lab values, and clinical outcomes (an175

extended version is available in the appendix). In terms of176

demographics, severe populations of patients have a higher177

incidence of male subjects and are older on average. Severe178

patients also have elevated comorbidity rates. Figures 2B179

and 2C visually confirm the impact of age and hypertension180

rates on population-level mortality—consistently with (11–13).181

In terms of lab values, CRP, AST, BUN, IL-6 and Protocalci-182

tonin are highly elevated among severe patients.183

D. Discussion and Impact. Our database is the largest avail- 184

able source of clinical information on COVID-19 assembled 185

to date. As such, it provides new insights on common symp- 186

toms and the drivers of the disease’s severity. Ultimately, this 187

database can support guidelines from health organizations, 188

and contribute to ongoing clinical research on the disease. 189

Another benefit of this database is its geographical reach. 190

Results highlight disparities in patients’ symptoms across 191

regions. These disparities may stem from (i) di�erent reporting 192

criteria; (ii) di�erent treatments; (iii) disparate impacts across 193

di�erent ethnic groups; and (iv) mutations of the virus since 194

it first appeared in China. This information contributes to 195

early evidence on COVID-19 mutations (14, 15) and on its 196

disparate e�ects on di�erent ethnic groups (16, 17). 197

Finally, the database provides average values of key param- 198

eters into our epidemiological model of the disease’s spread 199

and our optimization model of resource allocation (e.g., av- 200

erage length of stay of hospitalizations, average fraction of 201

hospitalized patients put on a ventilator). 202

The insights derived from this descriptive analysis highlight 203

the need for personalized data-driven clinical indicators. Yet, 204

our population-level database cannot be leveraged directly 205

to support decision-making at the patient level. We have 206

therefore initiated a multi-institution collaboration to collect 207

electronic medical records from COVID-19 patients and de- 208

velop clinical risk calculators. These calculators, presented in 209

the next section, are informed by several of our descriptive 210

insights. Notably, the disparities between severe patients and 211

the rest of the patient population inform the choice of the fea- 212

tures included in our mortality risk calculator. Moreover, the 213

geographic disparities suggest that data from Asia may be less 214

predictive when building infection or mortality risk calculators 215

designed for patients in Europe or North America—motivating 216

our use of data from Europe. 217

2. Predictive Analytics: Mortality and Infection Risk 218

Throughout the COVID-19 crisis, physicians have made dif- 219

ficult triage and care management decisions on a daily basis. 220

Oftentimes, these decisions could only rely on small-scale 221

clinical tests, each requiring significant time, personnel and 222

equipment and thus cannot be easily replicated. Once the 223

burden on “hot spots” has ebbed, hospitals began to aggregate 224

rich data on COVID-19 patients. This data o�ers opportu- 225

nities to develop algorithmic risk calculators for large-scale 226

decision support—ultimately facilitating a more proactive and 227

data-driven strategy to combat the disease globally. 228

We have established a patient-level database of thousands of 229

COVID-19 hospital admissions. Using state-of-the-art machine 230

learning methods, we develop a mortality risk calculator and an 231

infection risk calculator. Together, these two risk assessments 232

provide screening tools to support critical care management 233

decisions, spanning patient triage, hospital admissions, bed 234

assignment and testing prioritization. 235

A. Methods. This investigation constitutes a multi-center 236

study from healthcare institutions in Spain and Italy, two 237

countries severely impacted by COVID-19. Specifically, we 238

collected data from (i) Azienda Socio-Sanitaria Territoriale 239

di Cremona (ASST Cremona), the main hospital network in 240

the Province of Cremona, and (ii) HM Hospitals, a leading 241

hospital group in Spain with 15 general hospitals and 21 clini- 242
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Table 1. Count and prevalence of symptoms among COVID-19 patients, in aggregate, broken down into mild/severe patients, and broken
down per continent (Asia, Europe, North America). Mild and severe patients only form a subset of the data, and so do patients from Asia,
Europe and North America. A “-” indicates that fewer than 100 patients in a subpopulation reported on this symptom.

Symptom All patients Mild Severe Asia Europe North America

Count (%) Count (%) Count (%) Count (%) Count (%) Count (%)
Cough 94, 950 52.8% 6, 833 63.0% 5, 803 50.4% 14, 034 56.2% 78, 430 52.2% 1, 113 63.6%
Fever 95, 870 48.1% 6, 864 79.3% 6, 077 76.7% 14, 750 76.6% 78, 450 43.5% 1, 481 41.3%
Short Breath 17, 290 33.7% 6, 006 16.1% 5, 373 60.7% 11, 330 19.7% 3, 512 69.9% 1, 111 49.2%
Fatigue 11, 560 31.4% 5, 313 35.3% 1, 989 40.6% 11, 320 30.8% 226 64.2% ≠ ≠
Sputum 7, 613 26.3% 4, 995 29.2% 1, 216 34.2% 7, 395 26.7% ≠ ≠ 176 10.9%
Sore Throat 83, 170 22.2% 3, 513 14.2% 921 8.2% 6, 013 10.4% 75, 235 22.9% 550 9.8%
Myalgia 12, 150 17.5% 4, 455 16.4% 1, 643 19.1% 8, 517 15.5% 1, 633 33.5% 755 25.3%
Elev. Resp. Rate 7, 376 16.4% 527 9.7% 642 38.4% 1, 257 14.6% ≠ ≠ 6, 117 16.8%
Anorexia 3, 928 15.8% 1, 641 14.2% 808 15.4% 3, 566 13.8% 312 40.5% ≠ ≠
Headache 11, 430 15.7% 5, 068 12.2% 1, 541 8.6% 7, 929 9.9% 1, 633 27.2% 551 8.7%
Nausea 10, 070 12.4% 4, 238 6.5% 1, 798 5.6% 8, 262 8.2% 312 22.4% 259 9.0%
Chest Pain 3, 303 11.3% 767 12.2% 588 19.6% 2, 984 12.2% ≠ ≠ ≠ ≠
Diarrhea 16, 520 11.1% 5, 687 9.7% 5, 369 9.0% 11, 470 10.8% 3, 512 10.4% 1, 066 15.4%
Cong. Airway 1, 639 8.7% 2, 176 6.5% 234 14.1% 1, 369 8.9% ≠ ≠ 258 7.4%
Chills 3, 116 8.7% 2, 751 9.9% 520 9.4% 2, 794 8.2% ≠ ≠ 268 11.5%
Proj. Mortality 111, 700 11.7% 7, 428 0.4% 9, 146 74.0% 12, 820 16.7% 79, 750 9.9% 19, 060 15.8%
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Fig. 2. Summary of demographics, comorbidities and lab values in mild and severe COVID-19 patients. (A) Comorbidities, demographics, average lab values, average length of
stay and projected mortality among COVID-19 patients, in aggregate and broken down into mild/severe patients. (B) Impact of median age on projected mortality at a cohort
level. (C) Impact of hypertension rates on projected mortality at a cohort level. The size of each dot represents the number of patients in the cohort, and its color represents the
nation the study was performed in. We only include studies reporting both discharged and deceased patients.

cal centers spanning the regions of Madrid, Galicia, and León.243

We applied the following inclusion criteria to the calculators:244

• Mortality Risk: We include adult patients diagnosed245

with COVID-19 and hospitalized. We consider patients246

who were either discharged from the hospital or deceased247

within the visit—excluding active patients. We include248

only lab values and vital values collected on the first day in 249

the emergency department to match the clinical decision 250

setting—predicting prognosis at the time of admission. 251

• Infection Risk: We include adult patients who un- 252

derwent a polymerase chain reaction test for detecting 253
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COVID-19 infection at the ASST Cremona hospital (18).†254

We include all patients, regardless of their clinical out-255

come. Each patient was subject to a blood test. We omit256

comorbidities since they are derived from the discharge257

diagnoses, hence not available for all patients.258

We train two models for each calculator: one with lab259

values and one without lab values. Missing values are im-260

puted using k-nearest neighbors imputation (19). We exclude261

features missing for more than 40% of patients. We train262

binary classification models for both risk calculators, using the263

XGBoost algorithm (20). We restrict the model to select at264

most 20 features, in order to make the resulting tool easily us-265

able. We use SHapley Additive exPlanations (SHAP) (21, 22)266

to generate importance plots that identify risk drivers and267

provide transparency on the model predictions.268

To evaluate predictive performance, we use 40 random data269

partitions into training and test sets. We compute the average270

Area Under the Curve (AUC), sensitivity, specificity, precision,271

negative predictive value, and positive predictive value. We272

calculate 95% confidence intervals using bootstrapping.273

B. Results.274

Study Population. The mortality study population comprises275

2,831 patients, 711 (25.1%) of whom died during hospitaliza-276

tion while the remaining ones were discharged. The infection277

study population comprises 3,135 patients, 1,661 (53.0%) of278

whom tested positive for COVID-19. The full distributions of279

patient characteristics are reported in the appendix.280

Performance Evaluation. All models achieve strong out-of-sample281

performance. Our mortality risk calculator has an AUC of282

93.8% with lab values and 90.5% without lab values. Our283

infection risk calculator has an AUC of 91.8% with lab values284

and 83.1% without lab values. These values suggest a strong285

discriminative ability of the proposed models. We report in286

the appendix average results across all random data partitions.287

We also report in the appendix threshold-based metrics,288

which evaluate the discriminative ability of the calculators289

at a fixed cuto�. Using cuto� to ensure a sensitivity of at290

least 90% (motivated by the high costs of false negatives), we291

obtain an accuracy spanning 65%–80%.292

The mortality model achieves better overall predictive per-293

formance than the infection model. As expected, both models294

have better predictive performance with lab values than with-295

out lab values. Yet, the models without lab values still achieve296

strong predictive performance.297

Model Interpretation. Figure 3 plots the SHAP importance plots298

for all models. The figures sort the features by decreasing299

significance. For each one, the row represents its impact on300

the SHAP value, as the feature ranges from low (blue) to high301

(red). Higher SHAP values correspond to increased likelihood302

of a positive outcome (i.e. mortality or infection). Features303

with the color scale oriented blue to red (resp. red to blue)304

from left to right have increasing (resp. decreasing) risk as the305

feature increases. For example, “Age” is the most important306

feature of the mortality score with lab values (Figure 3A), and307

older patients have higher predicted mortality.308

†HM Hospitals patients were not included since no negative case data was available.

C. Discussion and Impact. The models with lab values provide 309

algorithmic screening tools that can deliver COVID-19 risk 310

predictions using common clinical features. In a constrained 311

healthcare system or in a clinic without access to advanced 312

diagnostics, clinicians can use these models to rapidly identify 313

high-risk patients to support triage and treatment decisions. 314

The models without lab values o�er an even simpler tool 315

that could be used outside of a clinical setting. In strained 316

healthcare systems, it can be di�cult for patients to obtain 317

direct advice from providers. Our tool could serve as a pre- 318

screening step to identify personalized infection risk—without 319

visiting a testing facility. While the exclusion of lab values 320

reduces the AUC (especially for infection), these calculators 321

still achieve strong predictive performance. 322

Our models provide insights into risk factors and biomark- 323

ers related to COVID-19 infection and mortality. Our results 324

suggest that the main indicators of mortality risk are age, 325

BUN, CRP, AST, and low oxygen saturation. These findings 326

validate several population-level insights from Section 1 and 327

are in agreement with clinical studies: prevalence of shortness 328

of breath (23), elevated levels of CRP as an inflammatory 329

marker (24, 25), and elevated AST levels due to liver dysfunc- 330

tion in severe COVID-19 cases (11, 26). 331

Turning to infection risk, the main indicators are CRP, 332

Leukocytes, Calcium, AST, and temperature. These findings 333

are also in agreement with clinical reports: an elevated CRP 334

generally indicates an early sign of infection and implies lung 335

lesions from COVID-19 (27), elevated levels of leukocytes 336

suggest cytokine release syndrome caused by SARS-CoV-2 337

virus (28), and lowered levels of serum calcium signal higher 338

rate of organ injury and septic shock (29). Since our findings 339

agree with clinical observations, our calculators can be used 340

to support clinical decision making—although they are not 341

intended to substitute clinical diagnostic or medical expertise. 342

When lab values are not available, the widely accepted 343

risk factors of age, oxygen saturation, temperature, and heart 344

rate become the key indicators for both risk calculators. We 345

observe that mortality risk is higher for male patients (blue in 346

Figure 3B) than for female patients (red), confirming clinical 347

reports (30, 31). An elevated respiratory frequency becomes 348

an important predictor of infection, as reported in (32). These 349

findings suggest that demographics and vitals provide valuable 350

information in the absence of lab values. However, when lab 351

values are available, these other features become secondary. 352

A limitation of the current mortality model is that it does 353

not take into account medication and treatments during hos- 354

pitalization. We intend to incorporate these in future research 355

to make these models more actionable. Furthermore, these 356

models aim to reveal associations between risks and patient 357

characteristics but are not designed to establish causality. 358

Overall, we have developed data-driven calculators that 359

allow physicians and patients to assess mortality and infection 360

risks in order to guide care management—especially with 361

scarce healthcare resources. These calculators are being used 362

by several hospitals within the ASST Cremona system to 363

support triage and treatment decisions—alleviating the toll of 364

the pandemic. Our infection calculator also supports safety 365

protocols for Banco de Credito del Peru, the largest bank in 366

Peru, to determine how employees can return to work. 367
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Mortality Prediction with Lab Values Mortality Prediction without Lab Values

Infection Prediction without Lab ValuesInfection Prediction with Lab Values

Fig. 3. SHapley Additive exPlanations (SHAP) importance plots for the mortality and infection risk calculators, including: (A) the mortality model with lab values; (B) the mortality
model without lab values; (C) the infection model with lab values; and (D) the infection model without lab values. The five most important features are shown for each model.
Gender is a binary feature (female is equal to 1, shown in red; male is equal to 0, shown in blue). Each row represents the impact of a feature on the outcome, with higher
SHAP values indicating higher likelihood of a positive outcome.

3. Predictive and Prescriptive Analytics: Disease Pro-368

jections and Government Response369

We develop a new epidemiological model, called DELPHI370

(Di�erential Equations Leads to Predictions of Hospitalizations371

and Infections). The model first provides a predictive tool to372

forecast the number of detected cases, hospitalizations and373

deaths—we refer to this model as “DELPHI-pred”. It then374

provides a prescriptive tool to simulate the e�ect of policy375

interventions and guide government response to the COVID-19376

pandemic—we refer to this model as “DELPHI-presc”. All377

models are fit in each US state (plus the District of Columbia).378

A. DELPHI-pred: Projecting Early Spread of COVID-19.379

A.1. Model Development. DELPHI is a compartmental model,380

with dynamics governed by ordinary di�erential equations.381

It extends the standard SEIR model by defining 11 states382

(Figure 4A): susceptible (S), exposed (E), infectious (I), unde-383

tected people who will recover (UR) or decease (UD), detected384

hospitalized people who will recover (DHR) or decease (DHD),385

quarantined people who will recover (DQR) or decease (DQD),386

recovered (R) and deceased (D). The separation of the UR/UD,387

DQR/DQD and DHR/DHD states enables separate fitting of388

recoveries and deaths from the data.389

As opposed to other COVID-19 models (see, e.g., 33), DEL-390

PHI captures two key elements of the pandemic:391

• Underdetection: Many cases remain undetected due 392

to limited testing, record failures, and detection errors. 393

Ignoring them would underestimate the scale of the pan- 394

demic. We capture them through the UR and UD states. 395

• Government Response: “Social distancing” policies 396

limit the spread of the virus. Ignoring them would over- 397

estimate the spread of the pandemic. We model them 398

through a decline in the infection rate over time. Specifi- 399

cally, we write: dS
dt = ≠–“(t)S(t)I(t), where – is a con- 400

stant baseline rate and “(t) is a time-dependent function 401

characterizing each state’s policies, modeled as follows: 402

“(t) = 2
fi

arctan
3

≠(t ≠ t0)
k

4
+ 1. 403

The inverse tangent function provides a concave-convex re- 404

lationship, capturing three phases of government response. 405

In Phase I, most activities continue normally as people 406

adjust their behavior. In Phase II, the infection rate 407

declines sharply as policies are implemented. In Phase 408

III, the decline in the infection rate reaches saturation. 409

The parameters t0 and k can be respectively thought of 410

as the start date and the strength of the response. 411

Ultimately, DELPHI involves 13 parameters that define 412

the transition rates between the 11 states. We calibrate six of 413

them from our clinical outcomes database (Section 1). Using 414
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non-linear optimization, we estimate seven parameters for each415

US state from the data to minimize in-sample error. This416

training procedure leverages historical data on the number of417

cases and deaths per US county (34). We include each state418

as soon as it records more than 100 cases. We provide details419

on the fitting procedure in the appendix.420

A.2. Validation. DELPHI was created in late March and has been421

continuously updated to reflect new observed data. Figure 4B422

shows our projections made on three di�erent dates, and423

compares them against historical observations. This plot424

focuses on the number of cases, but a similar plot for the425

number of deaths is reported in the appendix.426

In addition to providing aggregate validation figures, we427

also evaluate the model’s out-of-sample performance quanti-428

tatively, using a backtesting procedure. To our knowledge,429

this represents the first attempt to assess the predictive per-430

formance of COVID-19 projections. Specifically, we fit the431

model’s parameters using data up to April 27, build projec-432

tions from April 28 to May 12, and evaluate the resulting433

Mean Absolute Percentage Error (MAPE). Figure 4C reports434

the results in each US state.435

A.3. Discussion and Impact. Results suggest that DELPHI-pred436

achieves strong predictive performance. The model has been437

consistently predicting, with high accuracy the overall spread438

of the disease for several weeks. Notably, DELPHI-pred was439

able to anticipate, as early as April 3rd, the dynamics of the440

pandemic in the United States up to mid-May. At a time441

where 200,000–300,000 cases were reported, the model was442

predicting 1.2M–1.4M cases by mid-May—a prediction that443

became accurate 40 days later.444

Our quantitative results confirm the visual evidence. The445

MAPE is small across US states. The median MAPE is 8.5%446

for the number of cases—the 10% and 90% percentiles are447

equal to 1.9% and 16.7%. The median MAPE is 7.8% for the448

number of deaths—the 10% and 90% percentiles are equal449

to 3.3% and 25.1%. Given the high level of uncertainty and450

variability in the disease’s spread, this level of accuracy is451

suggestive of excellent out-of-sample performance.452

As Figure 4C shows, a limitation of our model is that453

the relative error remains large for a small minority of US454

states. These discrepancies stem from two main reasons. First,455

errors are typically larger for states that have recorded few456

cases (WY) or few deaths (AK, KS, NE). Like all SEIR-457

derived models, DELPHI performs better on large populations.458

Moreover, the MAPE metric emphasizes errors on smaller459

population counts. Second, our model is fitted at the state460

level, implicitly assuming that the spread of the pandemic is461

independent from one state to another—thus ignoring inter-462

state travel. This limitation helps explain the above-median463

error in a few heartland states which were confronted to the464

pandemic in later stages (MN, TN, IA).465

In summary, DELPHI-pred is a novel epidemiological model466

of the pandemic, which provides high-quality estimates of467

the daily number of cases and deaths per US state. This468

model has been incorporated to the forecasts used by the US469

Center for Disease Control to chart and anticipate the spread470

of the pandemic (7). It has also been used by the Hartford471

HealthCare system—the major hospital system in Connecticut,472

US—to plan its ICU capacity, and by a major pharmaceutical473

company to design a vaccine distribution strategy that can474

most e�ectively contain the next phases of the pandemic. 475

B. DELPHI-presc: Toward Re-opening Society. To inform the 476

relaxation of social distancing policies, we link policies to the 477

infection rate using machine learning. Specifically, we predict 478

the values of “(t), obtained from the fitting procedure of 479

DELPHI-pred. For simplicity and interpretability, we consider 480

a simple model based on regression trees (35) and restrict the 481

independent variables to the policies in place. We classify 482

policies based on whether they restrict mass gatherings, school 483

and/or other activities (referred to as “Others”, and including 484

business closures, severe travel limitations and/or closing of 485

non-essential services). We define a set of seven mutually 486

exclusive and collectively exhaustive policies observed in the 487

US data: (i) No measure; (ii) Restrict mass gatherings; (iii) 488

Restrict others; (iv) Authorize schools, restrict mass gatherings 489

and others; (v) Restrict mass gatherings and schools; (vi) 490

Restrict mass gatherings, schools and others; and (vii) Stay- 491

at-home. 492

We report the regression tree in the appendix, obtained 493

from state-level data in the United States. This model achieves 494

an out-of-sample R
2 of 0.8, suggesting a good fit to the data. 495

As expected, more stringent policies lead to lower values of 496

“(t). The results also provide comparisons between various 497

policies—for instance, school closures seem to induce a stronger 498

reduction in the infection rate than restricting “other” activ- 499

ities. More importantly, the model quantifies the impact of 500

each policy on the infection rate. We then use these results 501

to predict the value of “(t) as a function of the policies (see 502

appendix for details), and simulate the spread of the disease 503

as states progressively loosen social distancing policies. 504

Figure 4D plots the projected case count in the State of New 505

York (NY), for di�erent policies (we report a similar plot for 506

the death count in the appendix). Note that the stringency of 507

the policies has a significant impact on the pandemic’s spread 508

and ultimate toll. For instance, relaxing all social distancing 509

policies on May 12 can increase the cumulative number of 510

cases in NY by up to 25% by September. 511

Using a similar nomenclature, Figure 4E shows the case 512

count if all social distancing policies are relaxed on May 12 vs. 513

May 26. Note that the timing of the policies also has a strong 514

impact: a two-week delay in re-opening society can greatly 515

reduce a resurgence in NY. 516

The road back to a new normal is not straightforward: 517

results suggest that the disease’s spread is highly sensitive to 518

both the intensity and the timing of social distancing policies. 519

As governments grapple with an evolving pandemic, DELPHI- 520

presc can be a useful tool to explore alternative scenarios and 521

ensure that critical decisions are supported with data. 522

4. Prescriptive Analytics: Ventilator Allocation 523

COVID-19 is primarily an acute respiratory disease. The 524

World Health Organization recommends that patients with 525

oxygen saturation levels below 93% receive respiratory sup- 526

port (9). Following the standard Acute Respiratory Distress 527

Syndrome protocol, COVID-19 patients are initially put in the 528

prone position and then put in a drug induced paralysis via a 529

neuromuscular blockade to prevent lung injury (36). Patients 530

are then put on a ventilator, which delivers high concentrations 531

of oxygen while removing carbon dioxide (37). Early evidence 532
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Fig. 4. DELPHI, an epidemiological model to guide government response. (A) Simplified flow diagram of DELPHI. (B) Cumulative number of cases in the United States
according to our projections made at different points in time, against actual observations. (C) Out-of-sample Mean Absolute Percentage Error (MAPE) on the number of cases
and deaths per US state. (D) Impact of different policies on the future number of cases, in NY. (E) Impact of the timing of policies on the future number of cases, in NY.

suggests that ventilator intubation reduces the risk of hypoxia533

for COVID-19 patients (38).534

As a result, hospitals have been facing ventilator shortages535

worldwide (39). Still, local shortages do not necessarily imply536

global shortages. For instance, in April 2020, the total supply537

of ventilators in the United States exceeded the projected538

demand from COVID-19 patients. Ventilator shortages could539

thus be alleviated by pooling the supply, i.e., by strategically540

allocating the surge supply of ventilators from the federal541

government and facilitating inter-state transfers of ventilators.542

We propose an optimization model to support the allocation543

of ventilators in a semi-collaborative setting where resources544

can be shared both between healthcare facilities or through545

a central authority. Based on its primary motivation, we for-546

mulate the model to support the management of the federal547

supply of ventilators and inter-state ventilator transfers in the548

United States. A similar model has also been used to support549

inter-hospital transfers of ventilators. The model can also sup-550

port inter-country ventilator allocation during the next phases551

of the pandemic. This model leverages the demand projections552

from DELPHI-pred (Section 3) to prescribe resource allocation553

recommendations—with the ultimate goal of alleviating the554

health impact of the pandemic.555

A. Model. Resource allocation is critical when clinical care556

depends on scarce equipment. Several studies have used opti-557

mization to support ventilator pooling. A time-independent558

model was first developed for influenza planning (40). A time-559

dependent stochastic optimization model was developed to sup-560

port transfers to and from the federal government for COVID- 561

19, given scenarios regarding the pandemic’s spread (41). In 562

this section, we propose a deterministic time-dependent model, 563

leveraging the projections from DELPHI-pred. 564

We model ventilator pooling as a multi-period resource 565

allocation over S states and D days. The model takes as input 566

ventilator demand in state s and day d, denoted as vs,d, as 567

well as parameters capturing the surge supply from the federal 568

government and the extent of inter-state collaboration. We 569

formulate an optimization problem that decides on the number 570

of ventilators transferred from state s to state s
Õ on day d, 571

and on the number of ventilators allocated from the federal 572

government to state s on day d. We propose a bi-objective 573

formulation. The first objective is to minimize ventilator-day 574

shortages; for robustness, we consider both projected shortages 575

(based on demand forecasts) and worst-case shortages (includ- 576

ing a bu�er in the demand estimates). The second objective 577

is to minimize inter-state transfers, to limit the operational 578

and political costs of inter-state coordination. Mixed-integer 579

optimization provides modeling flexibility to capture spatial- 580

temporal dynamics and the trade-o�s between these various 581

objectives. We report the mathematical formulation of the 582

model, along with the key assumptions, in the appendix. 583

B. Results. We implemented the model on April 15, a time of 584

pressing ventilator need in the United States. We estimate 585

the number of hospitalizations from DELPHI-pred as the sum 586

of DHR and DHD. From our clinical outcomes database in 587

Section 1, we estimate that 25% of hospitalized patients are 588
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Fig. 5. The edge of optimization to eliminate ventilator shortages. (A) Projected shortages (in ventilator-days) in a baseline setting (without transfers) and with optimized
transfers between the states and/or from the federal government. (B) Pareto frontier between transfer distance and total shortage, for different state pooling fractions. (C) Map
of inter-state transfers recommended on April 15 in the US Northeast. For clarity, we do not plot shortages of fewer than 5 ventilators and transfers of fewer than 10.

put on a ventilator, which we use to estimate the demand for589

ventilators. We also obtain the average length of stay from590

our clinical outcomes database (Figure 2).591

Figure 5A shows the evolution of ventilator shortages with592

and without ventilator transfers from the federal government593

and inter-state transfers. These results indicate that ventilator594

pooling can rapidly eliminate all ventilator shortages. Figure595

5C shows ventilator transfers recommended in the US North-596

east on April 15 (with inter-state transfers only), overlaid on597

a map displaying the predicted shortage without transfers.598

There are di�erent pathways toward eliminating ventilator599

shortages. Figure 5B shows the trade-o� between shortages600

and transfer distance—each line corresponds to the maximal601

fraction of its own ventilators that each state can pool. Overall,602

states do not have to share more than 10% of their supply at603

any time to e�ciently eliminate shortages. States can largely604

meet their needs with help from neighboring states, with cross-605

country transfers only used as a last resort. Broadly, results606

underscore trade-o�s between ventilator shortages, the extent607

of inter-state transfers, the number of ventilators allocated608

from the federal government, and the robustness of the solution.609

We discuss these trade-o�s further in the appendix.610

C. Discussion and Impact. Our main insight is that ventilator611

shortages could be eliminated altogether through inter-state612

transfers and strategic management of the federal supply. Re-613

sults also underscore (i) the benefits of inter-state coordination614

and (ii) the benefits of early coordination. First, ventilator615

shortages can be eliminated through inter-state transfers alone:616

leveraging a surge supply from the federal government is not617

required, though it may reduce inter-state transfers. Under our618

recommendation, the most pronounced transfers occur from619

states facing no shortages (Ohio, Pennsylvania, and North620

Carolina) to states facing strong shortages (New York, New 621

Jersey). Second, most transfers occur in early stages of the 622

pandemic. This underscores the benefits of leveraging a pre- 623

dictive model like DELPHI-pred to align the ventilator supply 624

with demand projections as early as possible. 625

A similar model has been developed to support the re- 626

distribution of ventilators across hospitals within the Hartford 627

HealthCare system in Connecticut—using county-level fore- 628

casts of ventilator demand obtained from DELPHI-pred. This 629

model has been used by a collection of hospitals in the United 630

States to align ventilator supply with projected demand at a 631

time where the pandemic was on the rise. 632

Looking ahead, the proposed model can support the alloca- 633

tion of critical resources in the next phases of the pandemic— 634

spanning ventilators, medicines, personal protective equipment 635

etc. Since epidemics do not peak in each state at the same 636

time, states whose infection peak has already passed or lies 637

weeks ahead can help other states facing immediate shortages 638

at little costs to their constituents. Inter-state transfers of 639

ventilators occurred in isolated fashion through April 2020; 640

our model proposes an automated decision-making tool to 641

support these decisions systematically. As our results show, 642

proactive coordination and resource pooling can significantly 643

reduce shortages—thus increasing the number of patients that 644

can be treated without resorting to extreme clinical recourse 645

with side e�ects (such as splitting ventilators). 646

5. Conclusion 647

This paper proposes a comprehensive data-driven approach to 648

address several core challenges faced by healthcare providers 649

and policy makers in the midst of the COVID-19 pandemic. 650

We have gathered and aggregated data from hundreds of clini- 651
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cal studies, electronic health records, and census reports. We652

have developed descriptive, predictive and prescriptive mod-653

els, combining methods from machine learning, epidemiology,654

and mixed-integer optimization. Results provide insights on655

the clinical aspects of the disease, on patients’ infection and656

mortality risks, on the dynamics of the pandemic, and on the657

levers that policy makers and healthcare providers can use658

to alleviate its toll. The models developed in this paper also659

yield decision support tools that have been deployed on our660

dedicated website and that are actively being used by several661

hospitals, companies and policy makers.662
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