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1. Introduction

The ability to transform digitized clinical text (e.g., medical discharge summaries and
progress notes) into structured representations of extracted medical concepts, clinical asser-
tions and, ultimately, the relations between them is in great demand in the medical field.
Such a system would enable physicians to quickly and easily identify key aspects of a pa-
tient’s clinical condition and history, allowing for easier and more efficient decision making
and improved quality of care. Furthermore, annotated medical corpora are expensive to
create, so an automated system for text processing and extracting relevant medical infor-
mation would allow for their development to be much less time consuming and much more
resource efficient. There are many technical challenges associated with extracting medical
concepts from unstructured data including, but not limited to: choosing the right model
for the task, properly processing text data to be fed to the model, creating appropriate
features for the model, and tuning the chosen model appropriately and extensively (raising
the question of available computational power).

In 2010, Informatics for Integrating Biology and the Bedside (i2b2), as part of the Na-
tional NLP Clinical Challenges (n2c2), issued a contest (Uzuner et al., 2011) to investigate:

• Extraction of medical problems, tests, and treatments

• Classification of assertions made on medical problems

• Relations of medical problems, tests, and treatments

Participants in the challenge could focus on one or more of the three tasks, but given the
complexity of the three part problem (concepts to assertions to relations) and the later
parts being heavily dependent on the initial step of Named Entity Recognition (NER), in
our study, we concentrated on improving upon the medical concept extraction task. Tra-
ditionally, the task of concept extraction from medical annotations has been tackled with
rule-based systems. Recent natural language processing (NLP) developments, however, have
led researchers to explore the power of Transformers, such as Bidirectional Encoder Repre-
sentations from Transformers (BERT), for the task (Devlin et al., 2018). (Alsentzer et al.,
2019) developed an open source clinicalBERT which was applied to the 2010 i2b2 dataset.
However, their main focus was on developing an open source tool, not a new state-of-the-art.
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The goal of this project was to utilize the open source clinicalBERT model and to explore
strategies for improving performance on the concept extraction task of the 2010 i2b2 chal-
lenge. Our first area of exploration was inspired by the concept of learning from noisy labels
under an anchor-and-learn framework, which has been utilized previously in the healthcare
realm for electronic medical record phenotyping (Halpern et al., 2016). Motivated by this
approach, we decided that prior to fine-tuning for the NER task on the 2010 i2b2 dataset, we
would perform additional training of the clinicalBERT model using data with noisy labels.
To accomplish this, we utilized discharge summary notes from the MIMIC III database
and derived labels for these notes based on exact phrase matching with medical terms from
the Unified Medical Language System (UMLS). Although this additional training set was
far from perfect, our hypothesis was that we could still achieve performance gains for our
final task due to (1) the amount of extra data available for training on and (2) knowing
that the gold-labeled i2b2 dataset labels were loosely based on UMLS semantic types. If
performance gains were indeed achieved, we would have demonstrated an efficient way to
learn these concept representations without having to rely on hand-annotated gold-labeled
data for training. The second area of exploration we focused on was the implementation
of additional architectures for the final concept classification task. While BERT is most
often used with a simple Linear layer for classification, we wanted to implement bidirec-
tional Long Short-Term Memory with a Conditional Random Field (bi-LSTM+CRF) to
investigate whether or not this more complex architecture improved performance.

Although we were unable to prove through this study that a noisy label learning approach
is effective for medical concept extraction, we did observe slight performance gains with a
warm start model and a Linear classification layer compared to a non-warm start model
with a Linear classification layer. The best performance we achieved on the final down-
stream NER task utilized a non-warm start model with a bi-LSTM+CRF architecture.
Based on our results and findings, we believe that future research efforts could focus on
(1) augmenting the size of the UMLS/MIMIC III dataset used for additional training, (2)
experimenting with additional initialization methods, or (3) extending the investigation of
how generalizable a model trained on noisy labels may be on other medical datasets.

2. Related Work

In the 2010 i2b2 challenge, nine of the top 10 systems of the competition used Conditional
Random Fields (CRFs) to determine the concept boundaries and Support Vector Machines
(SVMs) to classify the concept type as a problem, test, or treatment. While 22 systems
were developed for concept extraction in the 2010 competition (Uzuner et al., 2011), since
then, researchers have tried to improve the obtained results still using hand-engineered fea-
tures and CRF-based NER systems (Wang et al., 2018; Gurulingappa et al., 2010). Others
have tested Neural Network based approaches using a bi-LSTM on top of a CRF (Flo-
rez et al., 2018; Zhu et al., 2018). Even more recently, this bi-LSTM+CRF architecture
was outperformed by other researchers who tackled the concept extraction problem us-
ing Transformer-based methods (Si et al., 2019) by pre-training the BERT architecture on
MIMIC III clinical notes data. (Si et al., 2019) pre-trained off-the-shelf BERT models and
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used additional bi-LSTM layers to obtain an Exact F1-Score of 0.9025, corresponding
to the current state-of-the-art (SOTA).

Additional recent contributions to this work by (Alsentzer et al., 2019) involved pre-training
biomedical-text-derived BERT models, BioBERT (Lee et al., 2019), on clinical notes and
discharge summaries to demonstrate the value of specialized BERT models. In our work,
we aimed to combine the strengths of various models and architectures and to focus on im-
provement of the downstream task through extensive fine-tuning. While previous research
has utilized a bi-LSTM+CRF architecture with non-contextual embeddings or BERT (with
either a simple Linear classification layer or with bi-LSTM layers), to our knowledge, imple-
mentation of BERT with a bi-LSTM+CRF architecture for NER on the 2010 i2b2 dataset
has not been completed. Furthermore, previous researchers tackling this challenge have not
explored additional supervised training on medical corpora with noisy labels, and so we
explored this by utilizing work from Halpern et al. (2014), which introduced the process of
using anchors to generate a labeled dataset. Through this endeavor, we investigated the
possibility of reducing or eliminating the need for gold-standard labeled data.

3. Methods

For our work, we used state-of-the-art, Transformer-based methods for Named Entity Recog-
nition. The particular architecture we chose to use to obtain contextual word representa-
tions was Bidirectional Encoder Representations from Transformers, also known as BERT
(Devlin et al., 2018). This is a general purpose NLP model, with which more or less any
NLP task could be performed if fine-tuned properly. A transformer (Vaswani et al., 2017),
which is the principal building block of BERT, is a non-recurrent Sequence-to-Sequence
NLP model which uses an encoder-decoder based architecture as well as self-attention to
enable the model to observe entire sequences, whereas other representation algorithms like
GLoVE (Pennington et al., 2014) or Word2Vec (Mikolov et al., 2013) would learn a single
representation for a given word without being able to grasp any long-term dependencies in
long sentences. Given the length of clinical notes, using BERT seemed like a logical choice.

Our approach to the concept extraction problem had two parts. First, we used pre-trained
BERT embeddings on clinical data provided by (Alsentzer et al., 2019) and performed addi-
tional training on a dataset with noisy labels derived by identifying anchors within MIMIC
III discharge summaries. Second, we fine-tuned the architecture on the 2010 i2b2 dataset.
We detail the methods related to the two parts of our study below.

3.1. “Post”-Pre-Training on MIMIC III Data

As explained in further detail in the Data section below, the 2010 i2b2 challenge provided
participants with a training set of 349 documents and a testing set of 447 documents.
Hand-labeling data of this type is a time-consuming task, so there were limitations to the
amount of data previous researchers have used to fine-tune their models for the final NER
task. We leveraged the wealth of data available in MIMIC III, in the form of discharge
notes, to perform additional training for the NER task. The MIMIC III database contains
millions of medical notes, approximately 60,000 of which are discharge summaries. Using
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discharge summaries alone would provide us with 74 times the amount of data provided in
the challenge. However, due to time and computational power constraints, we were only
able to utilize 1,000 of these summaries. Even still, this subset provided us with more than
twice as much data as what was provided by the 2010 i2b2 challenge. Our hypothesis was
that utilizing this additional training data would enhance performance on the final concept
extraction task.

To transition these 1,000 notes to a noisy dataset, we used UMLS semantic types to label
MIMIC III notes for NER (with the same labels as i2b2) based on exact phrase matching,
followed by a frequency analysis which resulted in removing a few nonsensical labels that
were common throughout the documents (i.e. “his” was originally labeled “B-Problem”
but was changed to “O” following our frequency analysis). This framework is similar to the
anchor variable approach used by (Halpern et al., 2014) in that the presence of a UMLS
concept constituted application of the entity label for which that concept belonged. The
benefit of such an approach is that, once a pipeline is defined, manual labeling of data is no
longer needed before training a classifier. Upfront, however, this task required significant
effort to i) determine which UMLS terms to match on, ii) develop a pipeline for matching,
and iii) format the labels of matched words and phrases to match the 2010 i2b2 format.
With this dataset (which we call UMLS/MIMIC III), we treated the anchors as noisy labels
to further train clinicalBERT for NER. In doing so, we experimented with both a Linear
and a bi-LSTM+CRF top-layer architecture. We considered this added “post”-pre-training
step as a warm start of weights for the prediction we were ultimately interested in.

3.2. Downstream NER on 2010 i2b2 Data

In the “post”-pre-training step described above, we split the noisy-labeled dataset into a
training and validation set and conducted a grid search over hyperparameters to determine
which parameters led to the best validation performance. We then saved and used the
two best versions of the “post”-pre-trained clinicalBERT as the final models, with updated
(or “warm-started”) weights, to perform NER on the 2010 i2b2 dataset. The main focus
during this step of our study was to investigate how different classification architectures
affected performance. Thus, we once again experimented with both a linear layer and a
bi-LSTM+CRF architecture for classification. Furthermore, as described in greater detail
in our Results section, we also explored the effects of fine-tuning, so we conducted a grid
search to observe which parameters led to optimal performance for the final task.

4. Data

For our first analysis effort, we utilized the MIMIC III Database and the Unified Medical
Language System (UMLS). The MIMIC III database is a freely-available database that
contains de-identified health-related data compiled from over 40,000 patients that were
admitted to critical care units of the Beth Israel Deaconess Medical Center between 2001
and 2012. The database contains approximately 60,000 patient discharge summaries. The
UMLS is a set of files containing health and biomedical vocabularies. Combining these two
data sources, we developed a pipeline for processing the MIMIC III discharge notes data
such that we matched the output label format of the 2010 i2b2 dataset, where each word was
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labeled as a medical problem, treatment, test, or as not belonging to any of these medical
concepts. We followed a standard “inside, outside, beginning” (IOB) format for tagging
tokens in chunks. To determine which terms in the discharge summaries were labeled
with which entity, we used vocabulary from specific UMLS semantic types (as detailed in
the Appendix), which resulted in a label vocabulary of 800,000 medical problems, 700,000
treatments, and 100,000 tests. Then, for our additional training task, we used a subset of
1,000 “noisy-labeled” discharge summaries. We separated these discharge summaries into
two datasets:

• A training set, consisting of 900 documents with 371,887 concept labels

• A validation set, consisting of 100 documents with 41,363 concept labels

For the second step of our analysis, we utilized datasets from the 2010 i2b2/VA n2c2 Re-
lations Challenge. The data for this challenge included discharge summaries from Partners
Healthcare and from Beth Israel Deaconess Medical Center (MIMIC II Database). Dis-
charge summaries and progress notes from University of Pittsburgh Medical Center were
also included in the datasets. Medical records were randomly split by institution and doc-
ument type. All records were fully de-identified and manually annotated with concept,
assertion, and relation information. For the original challenge a training set of 349 doc-
uments and a testing set of 447 documents were released, but the current release of the
dataset contains only 170 training documents and 256 testing documents. We separated
this data into three datasets:

• A training set, consisting of 152 documents with 29,679 concept labels

• A validation set, consisting of 18 documents with 5,079 concept labels

• A testing set, consisting of 256 documents with 64,811 concept labels

Given un-annotated text from patient reports similar to those described above, we aimed
to develop a well-performing system that can extract text that corresponds to medical
concepts (named entities, which consist of: medical problems, treatments, and tests). The
descriptions of these three named entities can be found below and were drawn from the
Concept Annotation Guidelines provided by i2b2 with the 2010 data. Each of the concepts
are loosely based on certain UMLS semantic types, but may also include instances not
covered within UMLS.

• Medical Problems are phrases that contain observations made by patients or clin-
icians about the patient’s body or mind that are thought to be abnormal or caused
by a disease.

• Treatments are phrases that describe procedures, interventions, and substances given
to a patient in an effort to resolve a medical problem.

• Tests are phrases that describe procedures, panels, and measures that are done to a
patient or a body fluid or sample in order to discover, rule out, or find more information
about a medical problem.
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5. Evaluation

In order to quantify the performance of our models, we used metrics such as Accuracy,
Precision, Recall, and F-Measure (or F1-Score). These are the metrics that were used and
reported in the 2010 i2b2 challenge. Given that the version of the dataset released for the
challenge is different from the version we used in this study, we could not make a direct
comparison with their results, however we wanted to remain consistent with their general
evaluation methodology. It is worth noting that the best concept extraction system from
the 2010 challenge achieved an exact F-measure of 0.852.

The primary metrics of interest, which we will discuss later in this report, are the Exact
Micro-Averaged F-Measure and Accuracy for all concepts together, as well as the F-Measure
for problems, treatments, and tests separately. Notice that we do not report Precision or
Recall for the sake of simplicity, as has been done extensively in the literature (Alsentzer
et al., 2019), (Si et al., 2019). While (Alsentzer et al., 2019) and (Si et al., 2019) compute
evaluation metrics at the entity level, we decided to compute metrics at the word-piece
level. BERT’s tokenizer tokenizes words into word-pieces, and converting the word-pieces
back to whole word entities proved to be too complex given the timeline of our project
(the “ner eval” section of the (Alsentzer et al., 2019) GitHub Repository demonstrates the
complexity of this process). An example of how we predicted is as follows: suppose the
word “chloroquine” was separated into “chloro” and “quine” by the tokenizer: this gave us
two word-pieces with two labels [B-Treatment, X]. At prediction time, we only considered
the first part of the word (thus the one not corresponding to X) for exact match predictions,
i.e. “chloro” for the label B-Treatment.

Given the differences in our evaluation schemes, we were not able to compare our results to
those in (Alsentzer et al., 2019) or in (Si et al., 2019), as it would not be a fair comparison,
especially since our evaluation methodology makes the problem even harder than it already
is. Therefore, we considered the best performance we obtained using the raw version of
clinicalBERT and a Linear Classifier on the i2b2 data to be our baseline performance to
beat, and we compared it to:

• No UMLS/MIMIC III Warm Start, but using a bi-LSTM+CRF top layer instead of
a linear layer

• UMLS/MIMIC III Warm Start using a linear layer, then downstream i2b2 using either
a linear layer or a bi-LSTM+CRF

• UMLS/MIMIC III Warm Start using a bi-LSTM+CRF, then downstream i2b2 using
either a linear layer or a bi-LSTM+CRF

In addition to general performance scores, we evaluated our model in terms of how much
gold labeled data was required to achieve adequate performance. The MIMIC III dataset
provided noisy labels to train on, but the i2b2 data was hand-labeled and thus is much
more accurate. We explored how well our model performed using varying levels of the i2b2
data (0%, 20%, 50%, 70%, and 100%) in the final training step to see if gold-labeled data
was indeed necessary for producing a reliable medical concept extraction model.
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6. Results

6.1. Data Processing and Experimental Setup

Our project involved a few key data and modeling components: the 2010 i2b2 dataset, the
UMLS/MIMIC III “noisy-labeled” dataset, and a fine-tuned clinicalBERT model. The i2b2
dataset, which began with individual files for each document, was transformed into a csv
file with each row containing a word and sentences separated by a blank row. Generating
a “noisy-labeled” dataset from MIMIC discharge notes to match this data format was no
small task. As discussed in our Data section, to create the necessary labels, words and
phrases, the discharge notes needed to be matched with terms from several UMLS seman-
tic types. For each word, potential labels included: O, B-treatment, B-test, B-problem,
I-treatment, I-test, and I-problem.

To accomplish this task, we utilized “PhraseMatcher” from the spaCy library. The al-
gorithm we created parses each note into sentences of length 126 or 64 and labels each word
according to the i2b2 label structure. Another important thing to note is that BERT’s tok-
enizer splits words into smaller chunks of words, and we therefore had to add another label,
‘X’, on top of the two special labels specific to BERT’s architecture (‘[CLS]’ and ‘[SEP]’).
We made sure that this tokenization, which created much longer sequences (because of the
additional ‘X’ labels), would still result in having sentences of maximum length 128 (includ-
ing the special labels), each of them starting with the ‘[CLS]’ token and potentially ending
with a padding token, which is commonly labeled as ‘O.’ As explained earlier, evaluation
is an exact match on word-piece tokens, which therefore ignores word-piece tokens with
ground truth label in {‘[CLS]’, ‘[SEP]’, ‘X’}.

6.2. Results of “Post”-Pre-Training on MIMIC III Data

As discussed, UMLS semantic types were used to label the MIMIC III dataset. Although
approximately 60,000 discharge summaries exist within the MIMIC III database, due to
GPU memory and runtime constraints, we were only able to perform additional clinical-
BERT training using 1,000 discharge summary notes. Despite not being able to take full
advantage of the wealth of data present in the MIMIC III database, we believed that if
we could show improvement in performance on our final task even using just a subset of
the MIMIC III notes then we would have shown the value in this additional training effort.
Another limitation, however, was the lack of access to multiple GPUs: we had access to one
K80 or P100 GPU with 16GB of RAM (on Google Colab), which only allowed us to use
a maximum batch size of 64 for the warm start training on UMLS/MIMIC III. This setup
already took approximately 2 hours to run per epoch. So, while we could have processed
more data into datasets, we would not have been able to run the experiments given the
computational resources we had and the timing of the project.

After creating a “noisy-labeled” data set through exact matching of terms, and after tok-
enizing them using the BERT tokenizer (into word-piece tokens), we split into a training
set and a validation set of sentences of maximum length 128 (including padding and spe-

7



An anchoring approach to M.I.E using Clinical BERT embeddings

cial BERT tokens). The sizes of these two sets, depending on the number of discharge
summaries processed, can be found in Table 1 below.

# MIMIC Notes Train Size Validation Size

1,000 195,853 21,762
2,000 395,973 43,998

Table 1: Train and validation size of datasets fed to clinicalBERT for post-pre-training

Note that we did not run any model on 2,000 MIMIC notes because of runtime and GPU
memory issues, but this is something that should be explored if more resources are available,
as we will discuss later in this report.

We retrieved a pre-trained version of clinicalBERT (Alsentzer et al., 2019) and fine-tuned it
with a multiclass classification linear layer, or a bi-LSTM+CRF layer; these two possibilities
were the most successful according to our literature review. We trained clinicalBERT, tun-
ing all of its parameters, to perform NER on the labeled MIMIC III notes, and performed
a grid search with the following hyperparameters:

• Maximum sentence size ∈ {128} (including special tokens CLS & SEP)

• Number of Epochs ∈ {3, 4, 5}

• Batch size ∈ {32, 64}

• AdamW Optimizer: Learning Rate (LR) ∈
{

2 · 10−5, 3 · 10−5, 5 · 10−5
}

• Gradient Clipping (GC) ∈ {True, False} with a maximum gradient norm fixed to 2

• Bi-LSTM Hidden Size (HS) ∈ {512, 768}, only used when applicable

In both cases, we evaluated Accuracy, Micro-Averaged F1-Score, and per-label F1-Score on
the validation set. The results can be found in Table 2 below, and all correspond to 1,000
notes extracted from MIMIC III discharge summaries.

Hyperparameters Top Layer
Micro-Avg
F1-Score

Accuracy
Treatment
F1-Score

Problem
F1-Score

Test
F1-Score

(4, 64, 3 · 10−5, False, NA) Linear 0.9716 0.9879 0.9747 0.9714 0.9661
(4, 64, 2 · 10−5, True, NA) Linear 0.9713 0.9876 0.9735 0.9718 0.9632
(4, 64, 3 · 10−5, False, 512) bi-LSTM+CRF 0.9711 0.9882 0.9730 0.9710 0.9683

Table 2: Results with BERT on the validation set of MIMIC III / UMLS terms for top 3
sets of hyperparameters (Epochs, Batch Size, LR, GC, HS)

It seems from the results above that a more complex top layer such as a bi-LSTM+CRF
layer does not necessarily lead to better performance than a simpler Linear classifier, at
least in terms of Micro Averaged F1-Score. Thus, we consider two different linear layers
which we will reference with “Warm Start with Linear 1” to indicate the best linear layer
model in Table 2, and “Linear 2” to indicate to the second best. Unfortunately, due to time
constraints, we were not able to run experiments with the best bi-LSTM+CRF Warm Start
(third model in Table 2) on the i2b2 data, but this is something that should be explored in
future endeavors.
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6.3. Results of Downstream NER on 2010 i2b2 Data

Recent advances in NLP, which have led to transformer-based models such as BERT, have
enabled researchers to show that contextualized embeddings can be combined with simple
downstream models to achieve performance that outperforms complex models, such as a
bidirectional Long Short-Term Memory with Conditional Random Field (bi-LSTM+CRF)
architecture. Thus, as a baseline, we began by performing the downstream NER task using
a Linear layer on top of the last BERT layer to determine the most probable label for
each token. Then, our experiments consisted of using a “warm-started” clinicalBERT with
UMLS/MIMIC III data, and fine-tuning it to perform NER on the 2010 i2b2 dataset. We
will discuss the results of a Linear top layer, and a bi-LSTM+CRF top layer, used to fine-
tune a warm-started clinicalBERT (and the warm start model will be specified). Each table
will contain the baseline model characterized by no warm start, to which we compare the
results of our anchoring methods. In terms of hyperparameters fitted, we performed a grid
search on the same hyperparameter space as earlier in Section 6.2 when applicable, except
for the epochs and batch size, where we explored in {2, 3, 4, 5} and in {16, 32}, respectively.
We only report the top 3 architectures (in terms of Micro-Averaged F1-Score) for each type
of top layer used.

6.3.1. Linear Multiclass Classification Layer

Here we report the top three architectures (in terms of Micro-Averaged F1-Score on the
i2b2 test) using a warm start and a linear layer on top of BERT to perform classification.
The first row of Table 3 below corresponds to the baseline model.

Hyperparameters
Warm
Start

Micro-Avg
F1-Score

Accuracy
Treatment
F1-Score

Problem
F1-Score

Test
F1-Score

(3, 16, 2 · 10−5, False, NA) None, Baseline Linear 0.8424 0.9526 0.8525 0.8604 0.8621
(5, 16, 5 · 10−5, False, NA) Linear 2 0.8436 0.9515 0.8609 0.8478 0.8655
(5, 32, 3 · 10−5, False, NA) Linear 2 0.8431 0.9531 0.8608 0.8554 0.8583
(5, 16 2 · 10−5, False, NA) Linear 2 0.8416 0.9526 0.8597 0.8518 0.8611

Table 3: Results on the test set of i2b2 2010 for top 3 sets of hyperparameters (Epochs,
Batch Size, LR, GC, HS) with a Linear Multiclass Classifier

As we can see, it appears as though the Linear 2 Warm Start performs best on the i2b2
task. Although Linear 1 is the best performing model on the UMLS/MIMIC III dataset,
transfer learning does not seem to agree for the i2b2 data. However, while there is an
improvement in most metrics, it is very small, and thus the significance of our findings
is inconclusive for this experiment.

6.3.2. bi-LSTM+CRF Layer

In addition to performing the downstream task utilizing the updated weights from the addi-
tional training task along with a linear classification layer, we also utilized a bi-LSTM+CRF
architecture for the concept classification task. The bi-LSTM allowed for taking informa-
tion from right and left contexts into account, and feeding the output of the bi-LSTM to
the CRF classifier resulted in predictions for the most likely sequence of labels as opposed
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to the most likely label for each word independently (as in the linear classifier case). We
present the results obtained using this more complex architecture in Table 4 below; un-
fortunately, due to time and resources constraints, we have only been able to run the grid
search with a Linear 1 Warm Start, but it could be interesting to look into Linear 2 and bi-
LSTM+CRF Warm Start. The general baseline still corresponds to the same one as shown
previously (first row), but we also include a baseline for a bi-LSTM+CRF layer (second
row), which corresponds to no warm start, but using a bi-LSTM+CRF layer on top of the
raw clinicalBERT, instead of a linear layer as in 6.3.1.

Hyperparameters
Warm
Start

Micro-Avg
F1-Score

Accuracy
Treatment
F1-Score

Problem
F1-Score

Test
F1-Score

(3, 16, 2 · 10−5, False, NA) None, Baseline Linear 0.8424 0.9526 0.8525 0.8604 0.8621

(2, 16, 3 · 10−5, True, 768)
None, Baseline
bi-LSTM+CRF

0.8546 0.9555 0.8683 0.8647 0.8642

(3, 16, 3 · 10−5, True, 768) Linear 1 0.8460 0.9523 0.8547 0.8655 0.8695
(2, 16, 3 · 10−5, True, 512) Linear 1 0.8429 0.9529 0.8507 0.8464 0.8668
(5, 32, 5 · 10−5, False, 512) Linear 1 0.8428 0.9512 0.8565 0.8540 0.8513

Table 4: Results on the test set of i2b2 2010 for top 3 sets of hyperparameters (Epochs,
Batch Size, LR, GC, HS) with a bi-LSTM+CRF Layer

As we can see, it seems like a linear warm start with a bi-LSTM+CRF top layer does
not help improve the performance, and quite the contrary, as the bi-LSTM+CRF baseline
remains the best performer of all models, except for the F-measures for the problem and
test categories.

6.3.3. Evaluation on varying levels of 2010 i2b2 data

While we did not see significant performance gains from implementing the “post”-pre-
training step, or adding additional architecture, we obtained promising results in reducing
the need for hand-labeled data. By utilizing “noisy-labeled” data in training a clinicalBERT
model with a linear top layer1 for NER, our model produced a much higher F1-Score with
0% of the gold standard data in training than a model without the warm start. These results
suggest that a considerable amount of learned information was transferred as a result of the
additional training on UMLS/MIMIC III to create a warm-started model.

Train Size Test F1-Score with WS Accuracy with WS Test F1-Score no WS Accuracy no WS

0 0.1957 0.6692 0.033 0.2298
2,867 (20%) 0.7905 0.9380 0.7765 0.9380
7,168 (50%) 0.8156 0.9467 0.8242 0.9497
10,035 (70%) 0.8275 0.9484 0.826 0.9492

Table 5: Results of different architectures with varying amounts of gold standard labeled
i2b2 2010 data used in training2

While the score is still much lower than necessary for implementation, Table 5 above reveals
the reduced need for hand-labeled data, as the warm start model outperforms the other
model in all scenarios but one, thus demonstrating its superior generalization properties.

1. This model on which these experiments were realized corresponds to Linear 1 Warm Start in Tables 3, 4
2. Percentage in the Train Size column corresponds to the percentage of total training data initially available
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7. Discussion

The aim of this project was to explore an anchoring approach to medical information ex-
traction using different architectures that have proven to be efficient for NER tasks, and to
try to bring substantial proof of how anchor learning (and thus transfer learning) can lead
to improved downstream performance. From a technical standpoint, our experiments seem
to show that a model without a warm start can perform as well (cf. Table 3), if not better
(cf. Table 4), than one with a warm start obtained using the UMLS/MIMIC III dataset.
Despite the performance improvement observed when using a bi-LSTM+CRF architecture
in the baseline setup (vs. a Linear layer), as mentioned by (Si et al., 2019), BERT contains
sufficient label correlation in and of itself, and a CRF might be unnecessary to obtain such
performance gains. This observation is supported by the fact that only a bi-LSTM was
utilized to obtain the current SOTA. Therefore, it seems as though our hypothesis of an
anchor approach improving downstream learning cannot be confirmed from our experiments.

However, there are a few research directions that could be explored in order to make sure
that this methodology does not work as we hypothesized it would, namely:

• While we have trained the warm start clinicalBERT with 1,000 MIMIC notes, we
believe that using all 60,000 notes could prove very helpful for both the “post”-pre-
training performance and the downstream NER task on i2b2 data. This would, how-
ever, require many more GPUs (or at the very least a few days of GPU time) and
some parallelization.

• Another idea we have not had the opportunity to test is alternative weight initializa-
tion methods in the top layers, namely Xavier normal or uniform initialization (Glorot
and Bengio, 2010) as it has proven to be extremely efficient for both Linear layers and
LSTM cells weight initialization.

• In order to compare to current SOTA (Si et al., 2019) and other published papers,
the post-processing of tokenized entries at prediction time should be consistent with
the way it was during the competition. Namely, one should do predictions at a word
level, instead of at the word-piece level, ignoring all word-pieces except the first one.

• Finally, one could further explore how generalizable our warm start model is on other
datasets, and evaluate how much it can reduce the necessity for gold-labeled data in
order to obtain good performance.

While modeling performance gains were not a significant part of this research project, the
promising results from varying the level of gold standard data identify an interesting point
of discussion. As seen in section 6.3.3, minimal performance gains are realized by increasing
the amount of hand labeled data beyond 20%, specifically when utilizing the warm start.
By implementing “post”-pre-training with the noisy dataset, using no hand-labeled notes
increases the F-1 Score by 0.16 as compared to no warm start. Continuing to reduce the
need for hand-labeled data increases the viability of implementing an NER model, as it
reduces the expense of building an accurate model.

11



An anchoring approach to M.I.E using Clinical BERT embeddings

From a clinical and practical standpoint, the integration of our modeling efforts into exist-
ing clinical practice is an important consideration. From a physician’s perspective, being
able to identify the problems, treatments, and tests mentioned in medical notes would be
especially helpful when a patient is admitted and the physician is seeking a quick, yet com-
prehensive sense of their medical history. If information could be provided on the number of
times certain events in these categories were mentioned in their chart, a medical professional
could easily get a more informative “problem list” for that patient relative to the standard
problems that populate current lists in the EPIC electronic medical record system. Addi-
tionally, automatically identifying labels for concepts would allow future automated systems
to learn relationships between problems and tests through their co-occurrence. Therefore,
although our work is just the first step toward the clinical implications we have discussed,
we believe our modeling efforts could easily be extended to create systems viable of being
integrated into practice.
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9. Appendix

Concept Type UMLS Semantic Types

Problem Acquired Abnormality, Anatomical Abnormality,
Cell or Molecular Dysfunction, Congenital Abnormality, Disease or Syndrome,
Experimental Model of Disease, Finding, Injury or Poisoning, Mental or Behav-
ioral Dysfunction, Neoplastic Process, Pathologic Function, Sign or Symptom,
Organ or Tissue Function

Treatment Therapeutic or Preventive Procedure, Clinical Drug, Health Care Activity

Test Diagnostic Procedure, Laboratory Procedure, Laboratory or Test Result

Table 6: UMLS Semantic Types used for each concept
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