
EVaRegression: A novel approach to Stable Regression

Hamza Tazi Bouardi1 and Pierre-Henri Ramirez1

1Master of Business Analytics, Operations Research Center, Massachusetts Institute of Technology

EVaRegression: A novel approach to Stable Regression

Hamza Tazi Bouardi1 and Pierre-Henri Ramirez1

1Master of Business Analytics, Operations Research Center, Massachusetts Institute of Technology

I. Motivation

The goal of the present project is to extend the Stable Regression (or CVaR
Regression) [1] to a new coherent risk measure. First, the CVaR is too conser-
vative (1), as it gives a lot of importance to the worst errors. This can be very
dangerous when outliers − which we believe always exist in practice − are present
in the data. Indeed, through this approach we would be amplifying their impact
on our regression. Also, the CVaR regression gives non-zero weights only to the
worst errors, thus neglecting the others, that can be arbitrarily low. Therefore
this objective function is unable to distinguish two regressions produc-
ing the same ”worst errors” but different ”small errors” (2). Indeed,
we only know that these errors are lesser or equal than the best individual error
among those selected for the regression. Moreover, its formulation in [1] undoubt-
edly makes the problem intractable at a very large scale (3) for convex
functions other than the absolute value. Even using the dualized version, in the
general case where we won’t be doing a linear regression, the constraints won’t
be tractable ones. We claim that (1), (2) and (3) could be overcome by replacing
the CVaR by another measure of its family, i.e. a coherent risk measure [2] - the
Entropic Value at Risk (EVaR).

II. Model

The Entropic Value at Risk [5] is a coherent risk measure and the tightest possible
upper bound obtained from Chernoff’s inequality for the CVaR [5]. The EVaR is
defined as follows:
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where MZ is the moment-generating function defined for Z a real valued random
variable as t ∈ R 7→ MZ(t) = E(etZ). In our case, if we call ` the loss function,
f the prediction function, Z corresponds to the random variable defined by Zi =
`(f (Xi), Yi). Therefore, our optimization problem, with a regularization term
Γ(f ) that depends on the estimator, can be written as follows:
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III. Solving Methods

We focused on the particular cases where `1(fw(Xi), Yi) = |w>Xi − Yi|,
`2(fw(Xi), Yi) =

(
w>Xi − Yi

)2
, and Γ(f ) = ||w||22 where w ∈ Rp are the re-

gression parameters. We tried several methods to solve this convex minimization
problem:
• First, we attempted to use a cutting planes algorithm unsuccessfully. We

also unsuccesfully tried using commercial solvers (Mosek) and express this
objective as an exponential cone constraint.

• Then, we applied a constant stepsize gradient descent (GD) algorithm which
ended up being effective but fairly slow.

• Finally, we implemented Nesterov’s accelerated gradient descent (NGD)
which proved to be very efficient and faster than classic gradient descent:
we chose this method for experimentations.

IV. Preprocessing and Model Selection

The experiments were conducted on three real world datasets [6] of variable sizes. The data
was randomly splitted into 70% train and 30% test. We normalized every feature
based on the training data’s mean and standard deviation to avoid divergence of gradient
descent due to exponential overflow. We tuned the hyperparameters (regularization
constant, step sizes) by splitting the train data into train/validation with ratio α, with
α in {0.7, 0.6, 0.5}. That split was either random (Classic Ridge Regression), or given by
the worst errors for train (Ridge Stable and EVaR Regressions) after the fitting.

V. Empirical Results Comparison

We compare the test MSE of Ridge Regularized Stable Regression and Classic Ridge Re-
gression with the Ridge Regularized `1 and `2−EVaR regressions. The EVaR Regressions
were fitted either with a random start (RS) or with a warm start (WS) given by the Classic
Ridge Regression.

Fig. 1: Test MSE of all methods for α1 = k1/n = 0.5 (Left), α2 = k2/n = 0.6 (Right) and α3 = k3/n = 0.7 (Bottom)

• The `1 EVaR seems to perform better than the `2 EVaR on these datasets

• There is no significant score difference between Stable and EVaR regressions, except for the Concrete
dataset

• `1 and `2 EVaR Regressions perform uniformly better than Stable Regression on the Auto MPG dataset

For the last observation, our hypothesis was that EVaR regressions perform better on
datasets containing a fair amount of noise and/or outliers, which is the case for the Auto
MPG dataset, which motivated part VII.

VI. Other property of EVaR

The EVaR also has one additional desirable property, as it is what we call a
strongly monotone risk measure. A risk measure ρ has such property if for (X, Y ),
a pair of real-valued random variables which verify the following conditions:

• (i) X ≥ Y (ii) P(X > Y ) > 0

• (iii) ess sup(X) > ess sup(Y ) or ess sup(X) = ess sup(Y ) = +∞

We have that ρ(X) < ρ(Y ). This property enables EVaR to distinguish two regressions
producing the same ”worst errors” but different ”small errors”, while the CVaR cannot as it
is not a strongly monotone risk measure.

VII. Sensitivity Analysis

We introduced some noise N ∼ N (0, 1.5) on 5% of randomly selected rows for
each of the three datasets and re-fitted all the models. The EVaR regressions
were fitted using the Classic Ridge Regression Warm Start, as we have seen in
part V that it tends to perform better than random warm start.

Fig. 2: Test MSE of all methods with added noise N ∼ N (0, 1.5) on 5% of the data for α1 = k1/n = 0.5 (Left),

α2 = k2/n = 0.6 (Right) and α3 = k3/n = 0.7 (Bottom)

• The `1−EVaR outperforms the Stable regression in two data sets out of
three, with an average MSE improvement of 6.1% on Housing and 4.2%
on Auto MPG, proving to some extent that we solve point (1) using EVaR
instead of CVaR.

• Again, the `1 EVaR consistently performs better that the `2 EVaR regres-
sion: an interpretation could be that the exponential in the EVaR makes
the squared errors on noisy data much more predominant than the absolute
value of the errors, therefore more difficult to minimize.
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